Epidemiological and Genomic Landscape of Azole Resistance Mechanisms in Aspergillus Fungi

نویسندگان

  • Daisuke Hagiwara
  • Akira Watanabe
  • Katsuhiko Kamei
  • Gustavo H. Goldman
چکیده

Invasive aspergillosis is a life-threatening mycosis caused by the pathogenic fungus Aspergillus. The predominant causal species is Aspergillus fumigatus, and azole drugs are the treatment of choice. Azole drugs approved for clinical use include itraconazole, voriconazole, posaconazole, and the recently added isavuconazole. However, epidemiological research has indicated that the prevalence of azole-resistant A. fumigatus isolates has increased significantly over the last decade. What is worse is that azole-resistant strains are likely to have emerged not only in response to long-term drug treatment but also because of exposure to azole fungicides in the environment. Resistance mechanisms include amino acid substitutions in the target Cyp51A protein, tandem repeat sequence insertions at the cyp51A promoter, and overexpression of the ABC transporter Cdr1B. Environmental azole-resistant strains harboring the association of a tandem repeat sequence and punctual mutation of the Cyp51A gene (TR34/L98H and TR46/Y121F/T289A) have become widely disseminated across the world within a short time period. The epidemiological data also suggests that the number of Aspergillus spp. other than A. fumigatus isolated has risen. Some non-fumigatus species intrinsically show low susceptibility to azole drugs, imposing the need for accurate identification, and drug susceptibility testing in most clinical cases. Currently, our knowledge of azole resistance mechanisms in non-fumigatus Aspergillus species such as A. flavus, A. niger, A. tubingensis, A. terreus, A. fischeri, A. lentulus, A. udagawae, and A. calidoustus is limited. In this review, we present recent advances in our understanding of azole resistance mechanisms particularly in A. fumigatus. We then provide an overview of the genome sequences of non-fumigatus species, focusing on the proteins related to azole resistance mechanisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Triazole Resistance in Aspergillus spp.: A Worldwide Problem?

Since the first description of an azole-resistant A. fumigatus strain in 1997, there has been an increasing number of papers describing the emergence of azole resistance. Firstly reported in the USA and soon after in Europe, it has now been described worldwide, challenging the management of human aspergillosis. The main mechanism of resistance is the modification of the azole target enzyme: 14-...

متن کامل

Azole Resistance in Aspergillus fumigatus: A Consequence of Antifungal Use in Agriculture?

Agricultural industry uses pesticides to optimize food production for the growing human population. A major issue for crops is fungal phytopathogens, which are treated mainly with azole fungicides. Azoles are also the main medical treatment in the management of Aspergillus diseases caused by ubiquitous fungi, such as Aspergillus fumigatus. However, epidemiological research demonstrated an incre...

متن کامل

Global Aspects of Triazole Resistance in Aspergillus fumigatus with Focus on Latin American Countries

Azole resistance in Aspergillus has emerged as an escalating problem in health care, and it has been detected in patients exposed, or not, to these drugs. It is known that azole antifungals are widely applied not only in clinical treatments for fungal infections, but also as agricultural fungicides, resulting in a significant threat for human health. Although the number of cases of azole-resist...

متن کامل

Clinical implications of globally emerging azole resistance in Aspergillus fumigatus.

Aspergillus fungi are the cause of an array of diseases affecting humans, animals and plants. The triazole antifungal agents itraconazole, voriconazole, isavuconazole and posaconazole are treatment options against diseases caused by Aspergillus However, resistance to azoles has recently emerged as a new therapeutic challenge in six continents. Although de novo azole resistance occurs occasional...

متن کامل

Does agricultural use of azole fungicides contribute to resistance in the human pathogen Aspergillus fumigatus?

Azole resistance in human fungal pathogens has increased over the past twenty years, especially in immunocompromised patients. Similarities between medical and agricultural azoles, and extensive azole (14α-demethylase inhibitor, DMI) use in crop protection, prompted speculation that resistance in patients with aspergillosis originated in the environment. Aspergillus species, and especially Aspe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016